IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

EEE/ISE PART II MEng. BEng and ACGI

SIGNALS AND LINEAR SYSTEMS

Time allowed: 2:00 hours

There are FOUR questions on this paper.

Q1 is compulsory.
Answer Q1 and any two of questions 2-4.
Q1 carries $\mathbf{4 0 \%}$ of the marks. Questions 2 to 4 carry equal marks ($\mathbf{3 0 \%}$ each).

Any special instructions for invigilators and information for candidates are on page 1.

First Marker: Peter Y. K. Cheung
Second Marker: M. M. Draief

Special instructions for invigilators: None

Information for candidates: None

[Question 1 is compulsory]

1. a) Briefly describe the following classifications of systems: i) a causal system; ii) a time invariant system.

A system has the following input-output relation.

$$
y(t)=x(t)-0.5 \times x(t+1)
$$

State with justification, whether this system is time-invariant and causal.
b) Separate and sketch the signal shown in Figure 1.1 into its even and odd components.

Figure 1.1
c) Find the first derivatives of the following signals and sketch the signals and their derivatives.
i) $\quad x(t)=u(t)-u(t-a), \quad a>0$
ii) $\quad y(t)=t \times[u(t)-u(t-a)], \quad a>0$.
d) For the circuit shown in Figure 1.2, find the differential equations relating the loop currents $y_{1}(t)$ and $y_{2}(t)$ to the input $f(t)$.

Figure 1.2
e) Find the impulse response $h(t)$ of a continuous-time LTI system with the input-output relation given by:

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t} e^{-(t-\tau)} x(\tau) d \tau \tag{4}
\end{equation*}
$$

f) Let $h(t)$ be the triangular pulse shown in Figure 1.3(a) and let $x(t)$ be the unit impulse train shown in Figure 1.3(b) and expressed as

$$
x(t)=\delta_{T}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T)
$$

Determine using graphical method and sketch $y(t)=h(t) * x(t)$ for the following values of T:
i) $\mathrm{T}=3$,
ii) $\mathrm{T}=1.5$.

Figure 1.3
g) Derive the transfer function of a continuous-time LTI system with poles at $\mathrm{s}=0.2 \pm 1.5 \mathrm{j}$, and zeros at $\mathrm{s}= \pm 1.5 \mathrm{j}$. Sketch the frequency response of this system.
h) Find, from first principle, the Fourier transform of the signal

$$
x(t)=e^{-a|t|}=\left\{\begin{array}{ll}
e^{-a t} & t>0 \tag{4}\\
e^{a t} & t<0
\end{array} .\right.
$$

i) Using the z-transform pair $\gamma^{k} u[k] \Leftrightarrow \frac{z}{z-\gamma}$, or otherwise, find the z-transform $X(z)$ of the sequence:

$$
\begin{equation*}
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(\frac{1}{3}\right)^{n} u[n] . \tag{4}
\end{equation*}
$$

j) An audio compact disc (CD) stores music digitally as 16 -bit numbers at a rate of 44.1 k samples per second.
i) Assuming that reconstruction of the analogue signal is using a non-ideal low-pass filter, state with justifications the maximum frequency component that can be stored.
ii) What data rate is expected to be read from an audio CD?
2. For the circuit shown in Figure 2.1, the voltages on capacitors C_{1} and C_{2} with both switches open for a long time are 1 V and 2 V are respectively. The two switches are closed simultaneously at $t=0$.
a) Given the Laplace transform pair $e^{-\lambda t} u(t) \Leftrightarrow \frac{1}{s+\lambda}$, find the currents $i_{l}(t)$ and $i_{2}(t)$ for $t \geq 0$.
b) By applying the initial value theorem, or otherwise, find the voltages across the capacitors C_{1} and C_{2} at $\mathrm{t}=0+$ (i.e. the initial values on the capacitors immediately after the switches are closed).

Figure 2.1
3. a) Given that the Fourier transform of $x(t)$ is $X(\omega)$, the differentiation property of the Fourier transform states that:

$$
\frac{d x(t)}{d t} \Leftrightarrow j \omega \times X(\omega)
$$

The signum function, $\operatorname{sgn}(t)$, is defined as:

$$
\operatorname{sgn}(t)= \begin{cases}+1 & t>0 \\ -1 & t<0\end{cases}
$$

i) Express the $\operatorname{sgn}(t)$ function in terms of the step function $u(t)$.
ii) By applying the differentiation property, or otherwise, show that the Fourier transform of $\operatorname{sgn}(t)$ is:

$$
\begin{equation*}
\operatorname{sgn}(t) \Leftrightarrow \frac{2}{j \omega} \tag{12}
\end{equation*}
$$

b) Given the Fourier transform pair:

$$
e^{-a t} u(t) \Leftrightarrow \frac{1}{a+j \omega}
$$

using the definition of the time convolution theorem, show that the inverse Fourier transform of $\quad X(\omega)=\frac{1}{(a+j \omega)^{2}}$ is $t e^{-a t} u(t)$.
4. A discrete-time LTI system with a sampling frequency of 8 kHz is shown in Figure 4.1. The rectangular boxes with the label z^{-1} provide one sample period delay to their input signals. The circular components are adders or subtractors. The triangular components provide linear gain factors of a_{i} or b_{i}, where i is 0,1 or 2 .
a) Derive the system transfer function $\mathrm{H}(\mathrm{z})$.
b) Find the difference equation relating the output $\mathrm{y}[\mathrm{n}]$ and input $\mathrm{x}[\mathrm{n}]$.
c) Given that the gain values are:

$$
\begin{aligned}
& b_{0}=1, b_{1}=-2 / \sqrt{2}, b_{2}=1 \\
& a_{1}=-1.8 / \sqrt{2}, \quad a_{2}=0.9^{2} .
\end{aligned}
$$

Find the poles and zeros of this system.
d) Sketch the frequency response of this system.

Figure 4.1
[THE END]

E2.5 Signals and Linear Systems

Solutions 2010

All questions are unseen.

Question 1 is compulsory.

Answer to Question 1

a)
i) A system is causal if its output $\mathrm{y}(\mathrm{t})$ at an arbitrary time $\mathrm{t}=\mathrm{t}_{0}$ depends on only the input $\mathrm{x}(\mathrm{t})$ for $\mathrm{t} \leq \mathrm{t}_{0}$.
ii) A system is time-invariant if a time shift in the input signal causes the same time shift in the output signal, i.e.

$$
\text { if } \quad y(t)=H(x(t)), \quad \text { then } \quad y(t-\tau)=H(x(t-\tau)) \text {. }
$$

The system is non-causal because the present output depends on future inputs. It is timeinvariant:

$$
\begin{equation*}
x(t+\tau)-0.5 x(t+\tau+1)=y(t+\tau) \tag{4}
\end{equation*}
$$

b)

c) i) $x(t)=u(t)-u(t-a), \quad a>0$

$$
\begin{aligned}
& u^{\prime}(t)=\delta(t) \quad \text { and } \quad u^{\prime}(t-a)=\delta(t-a) \\
& x^{\prime}(t)=u^{\prime}(t)-u^{\prime}(t-a)=\delta(t)-\delta(t-a)
\end{aligned}
$$

ii) $y(t)=t \times[u(t)-u(t-a)], \quad a>0$
$x^{\prime}(t)=[u(t)-u(t-a)]+t[\delta(t)-\delta(t-a)]$
But $\quad t \delta(t)=(0) \delta(t)=0 \quad$ and $\quad t \delta(t-a)=a \delta(t-a)$.
Therefore

$$
\begin{equation*}
x^{\prime}(t)=u(t)-u(t-a)-a \delta(t-a) \tag{4}
\end{equation*}
$$

d)

The loop equations for the circuit are:

$$
\begin{aligned}
& \left(5+\frac{2}{D}\right) y_{1}(t)-3 y_{2}(t) \\
& -3 y_{1}(t)+(D+3) y_{2}(t)
\end{aligned} \Rightarrow\left[\begin{array}{cc}
5+\frac{2}{D} & -3 \\
-3 & D+3
\end{array}\right]\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
f(t) \\
0
\end{array}\right]
$$

Applying the Cramer's rule gives:

$$
y_{1}(t)=\frac{D(D+3)}{5 D^{2}+8 D+6} f(t) \quad \text { and } \quad y_{2}(t)=\frac{3 D}{5 D^{2}+8 D+6} f(t) .
$$

e) $y(t)=\int_{-\infty}^{t} e^{-(t-\tau)} x(\tau) d \tau$

$$
h(t)=\int_{-\infty}^{t} e^{-(t-\tau)} \delta(\tau) d \tau=\left.e^{-(t-\tau)}\right|_{\tau=0}=e^{-t}, \quad t>0
$$

Thus, $\quad h(t)=e^{-t} u(t)$.
f)

g)

$$
H(s)=\frac{s^{2}+2.25}{s^{2}+0.4 s+2.29}
$$

h)

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{0} e^{a t} e^{-j \omega t} d t+\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t \\
& =\int_{-\infty}^{0} e^{(a-j \omega) t} d t+\int_{0}^{\infty} e^{-(a+j \omega) t} d t \\
& =\frac{1}{a-j \omega}+\frac{1}{a+j \omega}=\frac{2 a}{a^{2}+\omega^{2}} .
\end{aligned}
$$

i)

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{n} u[n] \Leftrightarrow \frac{z}{z-1 / 2} \\
& \left(\frac{1}{3}\right)^{n} u[n] \Leftrightarrow \frac{z}{z-1 / 3}
\end{aligned}
$$

$$
X(z)=\frac{z}{z-1 / 2}+\frac{z}{z-1 / 3}=\frac{2 z\left(z-\frac{5}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{3}\right)}
$$

j)
i) Nyquist Sampling theorem dictates that the maximum signal frequency is $0.5 \mathrm{x} 44.1 \mathrm{kHz}=22.05 \mathrm{kHz}$. Since a non-ideal filter is used for reconstruction, assume that the anti-aliasing filter is designed to cut out everything up to 80% this theoretical maximum. Therefore maximum frequency of signal is 17.64 kHz .
ii) Data rate is:

$$
44.1 \times 10^{3} \times 16=705.6 \mathrm{k} \text { bits per second }
$$

Answer to Question 2

a) From the initial conditions, we have:

$$
v_{C 1}\left(0^{-}\right)=1 V \quad \text { and } \quad v_{C 2}\left(0^{-}\right)=2 V
$$

Construct a transformed circuit in the s-domain:

The loop equation is therefore:

$$
\begin{aligned}
& \left(2+\frac{1}{s}\right) I_{1}(s)-2 I_{2}(s)=\frac{4}{s} \\
& -2 I_{1}(s)+\left(2+\frac{1}{s}\right) I_{2}(s)=-\frac{2}{s}
\end{aligned}
$$

Solving for $I_{l}(s)$ and $I_{2}(s)$ yields:

$$
\begin{aligned}
& I_{1}(s)=\frac{s+1}{s+\frac{1}{4}}=\frac{s+\frac{1}{4}+\frac{3}{4}}{s+\frac{1}{4}}=1+\frac{3}{4}\left(\frac{1}{s+\frac{1}{4}}\right)=\frac{4 s+4}{4 s+1} \\
& I_{2}(s)=\frac{s-\frac{1}{2}}{s+\frac{1}{4}}=\frac{s+\frac{1}{4}-\frac{3}{4}}{s+\frac{1}{4}}=1-\frac{3}{4}\left(\frac{1}{s+\frac{1}{4}}\right)=\frac{4 s-2}{4 s+1}
\end{aligned}
$$

Taking the inverse Laplace transforms of $I_{l}(s)$ and $I_{2}(s)$:

$$
\begin{align*}
& i_{1}(t)=\delta(t)+\frac{3}{4} e^{-t / 4} u(t) \\
& i_{2}(t)=\delta(t)-\frac{3}{4} e^{-t / 4} u(t) \tag{15}
\end{align*}
$$

b) From the transformed equivalent circuit above, we get:

$$
\begin{aligned}
& V_{C 1}(s)=\frac{1}{s} I_{1}(s)+\frac{1}{s} \\
& V_{C 2}(s)=\frac{1}{s} I_{2}(s)+\frac{2}{s}
\end{aligned}
$$

Substituting the results from part (a) for $I_{1}(s)$ and $I_{2}(s)$ yields:

$$
\begin{aligned}
& V_{C 1}(s)=\frac{1}{s}\left(\frac{s+1}{s+\frac{1}{4}}\right)+\frac{1}{s} \\
& V_{C 1}(s)=\frac{1}{s}\left(\frac{s-\frac{1}{2}}{s+\frac{1}{4}}\right)+\frac{2}{s}
\end{aligned}
$$

Apply the initial value theorem, we get:

$$
\begin{align*}
& V_{C 1}\left(0^{+}\right)=\lim _{s \rightarrow \infty} s V_{C 1}(s)=\lim _{s \rightarrow \infty} \frac{s+1}{s+\frac{1}{4}}+1=1+1=2 V \\
& V_{C 2}\left(0^{+}\right)=\lim _{s \rightarrow \infty} s V_{C 2}(s)=\lim _{s \rightarrow \infty} \frac{s-\frac{1}{2}}{s+\frac{1}{4}}+2=1+2=3 V \tag{15}
\end{align*}
$$

Answer to Question 3

a) i) The signum function $\operatorname{sgn}(t)$ can be expressed as:

$$
\begin{equation*}
\operatorname{sgn}(t)=2 u(t)-1 \tag{10}
\end{equation*}
$$

ii) Therefore $\frac{d}{d t} \operatorname{sgn}(t)=2 \delta(t)$.

Let $\operatorname{sgn}(t) \Leftrightarrow X(\omega)$.
We have:

$$
j \omega \times X(\omega)=F T[2 \delta(t)]=2
$$

Hence

$$
\operatorname{sgn}(t) \Leftrightarrow \frac{2}{j \omega}
$$

b)

$$
X(\omega)=\frac{1}{(a+j \omega)^{2}}=\left(\frac{1}{a+j \omega}\right) \times\left(\frac{1}{a+j \omega}\right)
$$

The time convolution theorem states that multiplication in the frequency domain is equivalent to convolution in the time domain. That is:

$$
x_{1}(t) * x_{2}(t) \quad \Leftrightarrow \quad X_{1}(\omega) \times X_{2}(\omega) .
$$

Given that:

$$
e^{-a t} u(t) \Leftrightarrow \frac{1}{a+j \omega}
$$

we get:

$$
\begin{aligned}
x(t) & =e^{-a t} u(t) * e^{-a t} u(t) \\
& =\int_{-\infty}^{\infty} e^{-a t} u(\tau) e^{-a(t-\tau)} u(t-\tau) d \tau \\
& =e^{-a t} \int_{0}^{t} d \tau=t e^{-a t} u(t)
\end{aligned}
$$

Hence:

$$
t e^{-a t} u(t) \Leftrightarrow \frac{1}{(a+j \omega)^{2}} .
$$

Answer to Question 4

a) $H(z)=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}}{1+a_{1} z^{-1}+a_{2} z^{-2}}$
b) $y[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]-a_{1} y[n-1]-a_{2}[n-2]$
c) $H(z)=\frac{1-2 / \sqrt{2} z^{-1}+z^{-2}}{1-1.8 / \sqrt{2} z^{-1}+0.9^{2} z^{-2}}$

Factorize numerator and denominator polynomial gives:

$$
\text { zeros at } \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} j
$$

poles at $0.9 \times\left(\frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}} j\right)$.
d) This is a notch filter with poles and zeros as shown:

The notch frequency is at $1 / 8 \mathrm{x}$ sampling frequency $=1 \mathrm{kHz}$.

